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I. PAIRWISE MODEL INFERENCE

As discussed in the main text, in this work we build
statistical models for distributions over sequences of
evolutionary-related proteins, arranged in a multiple se-
quence alignment (MSA). A generic MSA consists in a
M × L matrix having M sequences as rows:

A ≡

 a
1

a2

..
aM

 (1)

where each as is an array with L entries from an alphabet
of q=21 letters (the 20 natural amino acids plus the gap
state):

as ≡
(
as1 as2 .. asL

)
. (2)

In particular, we consider maximum entropy, pairwise
models for protein families[1–3], which reproduce the
amino acid frequencies for single residues and correla-
tions between amino acids of different residues as ob-
served in the MSA. Let Fi(α) denote the frequency of
amino acid α at position i and Fi,j(α, β) the frequency
of co-occurence of amino acids α and β at positions i
and j, respectively. In the following, we will use upper-
case F for averages over the MSA sequences, lowercase f
for averages over the model distribution and θ for model
parameters. In order to reduce the effect of possible sam-
pling biases in the MSA, for each sequence s we computed
a weight ws = 1/ns, where ns is the number of similar se-
quences to sequence s, using a similarity threshold of 0.7.
Then, the frequencies F ≡ {Fi(α)}, {Fi,j(α, β)} were cal-
culated as weighted averages over the M sequences in the
MSA[2, 3]:

Fi(α) =M−1
eff

M∑
s=1

wsδ(a
s
i , α)

Fi,j(α, β) =M−1
eff

M∑
s=1

wsδ(a
s
i , α)δ(asj , β)

(3)

where Meff =
∑
s ws and δ(..) returns 1 if the argu-

ments are equal and 0 otherwise. On using a set of La-
grange multipliers θ ≡ {hi(α)}, {Ji,j(α, β)} to constrain
the model averages f ≡ {fi(α)}, {fi,j(α, β)} to the ob-
served frequencies F , the maximum entropy distribution

takes the form:

P (a) = Z(θ∗)−1 exp

∑
i

h∗i (ai) +
∑
i,j>i

J∗i,j(ai, aj)


︸ ︷︷ ︸

−H(a)

(4)
where H(a) is the energy of sequence a, Z(θ) =∑
a exp[−H(a)] is the partition function, and the pa-

rameters θ∗ satisfy the equations:

f∗p =

(
∂ lnZ

∂θp

)
θ=θ∗

= Fp, p = 1,

(
L

2

)
q2 + Lq.

(5)
In practice, to solve Eqs. 5 we minimized the following
quantity:

L(θ) = lnZ(θ)−
∑
p

Fpθp + (λ/2)
∑
p

θ2
p (6)

that corresponds to the negative log-likelihood of the
parameters θ (rescaled by M) plus a l2-regularization
term. As observed in [4], even though the original prob-
lem is overparametrized, due to this latter term L(θ) has
a unique minimum θ∗. In principle, this minimum could
be found iteratively, computing the gradient of L(θ) at
every iteration:(

∂L(θ)

∂θp

)
θt

= fp(θ
t)− Fp + λθtp (7)

and updating θ proportionally:

θt+1
p = θtp − α

(
∂L(θ)

∂θp

)
θt

(8)

where the parameter α represents a step-size. At each
iteration t, the model averages f at θt (and the gra-
dient through Eq. 7) were estimated by multiple Monte
Carlo simulations (from 20 to 64) and a number of sweeps
(moves per residue in the chain) ranging from 104 to 105.
Since convergence of gradient descent (Eq. 8) was pro-
hibitively slow, we adopted an accelerated gradient iter-
ative method with an additional momentum step[5]:

1: θt+1
p = ηtp − α

(
∂L(θ)

∂θp

)
ηt

2: ηt+1
p = θt+1

p + βt(θt+1
p − θtp)

(9)

starting from η0 = θ0 = 0. The step-size α has been kept
fixed during the minimization, using a constant value of
α = 0.01. The value of momentum-related parameter
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βt depends on the iteration number as βt = t
t+3 . After

2000 iterations of accelerated gradient descent, momen-
tum was turned off by setting β = 0 and parameters were
refined with 3000 iterations of standard gradient descent.
Finally (see Results section in the main text), we checked
through extensive sampling (106 sweeps per trajectory)
that the inferred parameters do correspond to the de-
sired minimum and that they reproduce the amino acid
frequencies from the MSA, f∗ ≈ F − λθ∗ (see Eq. 7).
In the left panel of Fig. S1 the reconstructed pairwise
frequencies fi,j(α, β) are compared with the frequencies
Fi,j(α, β) computed from the corresponding MSA for two
of the protein domains in the dataset, the small RRM 1
domain and the largest domain in the set, the Trypsin
domain.

II. COMPUTATION OF CO-EVOLUTIONARY
COUPLINGS AND CONTACT PREDICTION

Co-evolutionary couplings were extracted from the
converged values of the parameters J following a protocol
proposed by Ekeberg et al.[4]: for each pair of residues
i and j, we first computed the Frobenius norm of the
corresponding q × q couplings sub-matrix:

ci,j = ‖J ′i,j‖2 =

 q∑
α=1

q∑
β=1

J ′i,j(α, β)2

1/2

(10)

where J ′i,j denotes the q × q sub-matrix Ji,j after
double-centering. Then, we applied an average product
correction[6]:

Ci,j = ci,j − 〈c〉i 〈c〉j / 〈c〉 (11)

where the 〈c〉 denotes an average over all the elements
of c, and 〈c〉i and 〈c〉j averages over the i-th and j-th
columns, respectively. In the right panel of Fig. S1,
the Cβ-Cβ distance distributions corresponding to set of
pairs of residues with different values of co-evolutionary
couplings are compared. We included in the analysis
all the residues pairs separated by more than 4 residues
along the sequence, and averaged across the 18 protein
families. Positions in the sequence alignments with a
fraction of gaps > 5% were discarded in order to mini-
mize the effect of misaligned regions. Strongly coupled
residues (C > 0.7, red line) are separated by short dis-
tances distributed around a mean value of σ = 5.5 Å,
with a spread of ∼ 2 Å, in agreement with the position
of the first peak in the pair correlation function charac-
teristic of the nearest neighbors of a central residue, as
computed from the same dataset of protein structures
(black broken line).

The top N ranked pairs of residues according to the
coupling Ci,j for j > i + 4, with N being the number
of amino acids in a protein structure, were classified as
“long-range” predicted contacts. Furthermore, we de-
fined a linear combination of scores as a heuristic for

determining if two residues i, i+ 4 are in contact within
an α-helix structure:

Cα(i, i+ 4) =
1

3

1∑
k=−1

C(i+ k, i+ 4 + k)−

1

5

3∑
k=−1

C(i+ k, i+ 2 + k)

(12)

This function quantifies the consistency with the heli-
cal geometry of the couplings involving residues close in
sequence to i and i + 4, and tends to be positive for
i→ i+ 4 pairs within a α-helix. Pairs having a value of
Cα > 0.05 were predicted as contacts in helices. Fig. S2
compares the actual and predicted alpha-helical content
per residues of the 18 domains analyzed in this work.

III. COMPARISON WITH MEAN FIELD
ALGORITHM

Fig. S3 shows the precision of the top ranked predic-
tions as a function of their scaled rank, for the 18 protein
domains analyzed in this work. For a structure with a
total of NC contacts, the precision for scaled rank r is
the fraction of the r×NC top-scoring pairs of residues
that are actually found in contact (Cβ-Cβ < 8 Å). We
included in the analysis all the residue pairs with a se-
quence separation larger than four (dark blue lines) and
larger than five (light blue lines). Fig. S3 shows also
(broken lines) the precision curves obtained following ex-
actly the same protocol (and the same definition of score,
Eqs. 10 and 11) but using the mean field approach intro-
duced in [3]. Following [3], overfitting was avoided adding
a pseudocount λ = Meff in the calculation of the empir-
ical covariance. Even if the number of cases taken into
consideration (18 protein families) is too small to make a
quantitative comparison between the two methods, this
analysis shows that predictions from Boltzmann learning
have better or similar precision to the predictions ob-
tained using a mean field approximation. In some cases
these improvements are quite evident (e.g. the HTH 31,
Sigma70 r2 and RRM 1 domains).

IV. LIKELIHOOD GRADIENT ESTIMATION
AND MULTIMODAL DISTRIBUTIONS OF

SEQUENCES

The potential organization of the MSA in clusters, rep-
resenting families in a superfamily or subfamilies of se-
quences could represent a problem for our importance-
sampling strategy. In particular, the number of MCMC
steps at each gradient evaluation (see Eq. 7) should
be large enough for the simulated trajectories to equi-
librate over different “basins” in sequence space, mini-
mizing the error in the numerical estimates of the gra-
dient of the likelihood in Eq. 6. In the main text



3

(Fig. 1, panels A and B), we show that this is true
for the ADH zinc N protein family: our simulated tra-
jectories reproduce almost quantitatively the empirical
distribution of sequences P (PC1,PC2) over the first two
PCA eigenvectors of the MSA covariance matrix[7]. In
particular, the “landscape” associated to this distribu-
tion - that is given to within an additive constant by
A(PC1,PC2) = − logP (PC1,PC2) - nicely character-
izes the complexity of the system in terms of minima
(metastable clusters of sequences) and the barriers sep-
arating them. In Fig. 4 we show four examples of dif-
ferent complexity: for the two protein families RRM 1
and cNMP binding, the distribution is essentially uni-
modal (top panels), while the two families TrkA N and
CMD clearly show multiple minima separated by barri-
ers large enough to slow down the MCMC sampling. We
roughly estimated the characteristic time-scale of global
equilibration from the simulated trajectories as the expo-
nential autocorrelation time of the slowest relevant com-
ponent of the energy H(a). The fitted τslow are reported
in table I, in units of MC sweeps (moves per residue). As
expected, families associated with a multimodal distribu-
tion of sequences are characterized by a slow process with
a relaxation time of ≈ 103 MC sweeps, that is clearly ab-
sent for the families associated to unimodal distributions.
Albeit the actual values depend on the specific details of
the MCMC dynamics, the observed effect is general and
clearly system-dependent. In order to check the effect of
these different time-scales on the reconstruction errors,
we analyzed again the protein families in table I, using
16 simulated trajectories of length 10 τslow sweeps at each
minimization step. In this way, the accuracy of gradient
estimation is tuned to the system-dependent slowest re-
laxation time. The final mean relative absolute errors
εr = 〈|Fi,j − fi,j |/Fi,j〉Fi,j>0.01 are similar for the differ-

ent systems and lie in the range of 1.5-3.5, demonstrating
that the optimal number of MCMC steps should be tai-
lored to the time-scale associated to global equilibration.
Using an in-house Fortran implementation of our Boltz-
mann learning approach, a single gradient evaluation on
104 sweeps required 1 second for a domain of 60 residues,
3 seconds for a domain of 100 residues, and 28 seconds
for the largest domain in the set, the Trypsin domain
(263 residues). By using 5000 total minimization steps
and 16 independent MC simulations per gradient evalua-
tion, this translates to a total computational cost for full
convergence of 1, 3 and 622 hours, respectively.

V. PROTEIN COARSE-GRAINING AND
HAMILTONIAN

The protein chain is described by the heavy atoms of
the backbone plus the Cβ atoms of the side chains. The
potential V acting on the protein can be written as the
sum of a bonded term Vb and a non-bonded term Vnb as

V = Vb + Vnb where:

Vb = Ṽbonds + Ṽangles + Ṽtorsions + Vφ,ψ (13)

Vnb = V
CβCβ
LJ + V O..NLJ + Ṽ 1−4

LJ + VH (14)

The potential contributions taken from the
AMBER99SB-ILDN force field [13] are denoted by
a tilde. These terms account for the correct backbone
geometry and comprise the two-body bonded potential

Ṽbonds, the three-body angle potential Ṽangles, the
four-body proper (but the φ and ψ angles) and improper

dihedrals Ṽtorsions and the Ṽ 1−4
LJ short-range van der

Waals potentials (two-body term between atoms sepa-
rated by three bonds). Their precise functional forms
and constants are fully described elsewhere[14]. On top
of the absence of explicit solvent, the present model
also lacks the hydrogen atoms and, most importantly,
the atomic charges. For these reasons, it is crucial to
recalibrate some of the force field terms to effectively
take these effects into account in the framework of the
current coarse-graining. To this aim, we re-fitted the
force field proper dihedral potentials for the φ and ψ
Ramachandran’s angles resulting in the Vφ,ψ term (see
Fig. S10 and Table S1). Finally, the remaining non-
bonded terms account respectively for the co-evolution

prediction V
CβCβ
LJ , for an hydrogen bond mimicking

potential for helix stabilization V O..NLJ and for a generic
hardcore repulsion preventing atom overlaps VH . These
terms can be explicitly written as the following sums:

V
CβCβ
LJ =

∑
i,j∈I

V
rββ ,εββ
LJ (rij) (15)

V O..NLJ =
∑
a∈A

V rON ,εONLJ (rOa,Na+4
) (16)

VH =
∑
i,j /∈I

(
rββH
rij

)12

+
∑
i=Cβ
j 6=Cβ

(
rβxH
rij

)12

+
∑
i 6=Cβ
j 6=Cβ

(
rxxH
rij

)12

(17)

Where N is the number of residues of the protein, I is
the set of the N best predicted pair interactions between
Cβ atoms distant at least 5 residues along the sequence,
rij is the distance between atom i and j, A is the set
of predicted α helical residues, rOa,Na+4

is the distance
between the oxygen atom of residue a and the nitrogen
atom of residue a+4, V r0,ε0LJ (r) = ε0

[
(r0/r)

12 − 2(r0/r)
6
]

is the usual 12-6 Lennard-Jones function and the remain-
ing parameters are set to: rββ = 0.55 nm, εββ = εON =

15 kJ/mol, rON = 0.3 nm, rββH = 0.5 nm, rβxH = 0.3 nm,
rxxH = 0.2 nm. See the inset in Fig. S5 for a schematic
illustration of all the non-bonded potentials and the pro-
tein coarse-graining.

VI. FOLDING SIMULATION DETAILS

For all the 18 proteins, we used the same simulation
protocol consisting of a Langevin dynamics simulation
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performed using the molecular dynamics package GRO-
MACS 4[15], with an inverse friction constant of 1 ps and
an integration time step of 2 fs. Each simulation was set
up with a replica exchange scheme in order to enhance
the sampling, with 10 replicas at increasing temperatures
(230 K, 245 K, 260 K, 276 K, 294 K, 313 K, 333 K, 354
K, 377 K, 401 K) allowed to attempt an exchange ev-
ery 40 ps. Given the small number of simulated atoms
with respect to an all-atom simulation, the energy fluc-
tuations were still large enough for the largest protein
to lead an average exchange rate of 10% between adja-
cent replicas with the above temperature scheme. The
starting conformation of each folding run is an unfolded
conformation obtained after 2 ns at high temperature
with all the predicted interactions turned off. This led
to starting structures with root mean square deviation to
the native fold greater than 15 Å. Each replica run for
100 ns leading to an overall simulated time of 1 µs per
protein. In Fig. S5 are shown two trajectories as well as
a condensed sketch of all the terms of the potential.

VII. STRUCTURE-BASED REFERENCE
SIMULATIONS

To set a reference baseline for the prediction quality of
our coarse-grained model, we performed the same set of
simulations for each of the 18 domains using the protein
native contacts as the set of “predicted” contacts. These
Cβ-Cβ native contacts have been obtained using a cutoff

of 6.5 Å and excluding those contacts between first neigh-
bor residues along the sequence. The number of native
contact per protein is usually larger than N , the number
of residues. The best dRMSD conformations obtained
using this structure-based (SB) approach are shown as a
black curve in Fig. S6.

VIII. PAS DOMAIN FOLDING

In the PAS domain we observe a large deviation be-
tween the dRMSD of the minimum energy structure (7
Å) and the absolute minimum dRMSD (3.6 Å) sampled
during the simulation. Removing 5 predicted contacts
belonging to the dimeric interface and repeating the sim-
ulation we observe a much better dRMSD of the min-
imum energy structure (4.7 Å) (see Fig. S6). To ver-
ify that this improvement is specific to these 5 contacts,
we performed 20 independent simulations following the
same protocol detailed above in the “Folding simulation
details” paragraph, where in each of them, 5 randomly
picked false positives contacts (CB-CB distance > 8 Å in
the native structure) have been removed, paying atten-
tion to keep the 5 original dimeric contacts. None of these
control simulations resulted in an improved dRMSD of
the minimum energy structure.

IX. SRC CONFORMATIONAL SAMPLING

In Fig. S8 (panels A, B) we highlight the most flexi-
ble regions of SRC calculated using the root mean square
fluctuation (RMSF). We observe a qualitative agreement
with an extensive sampling all-atom molecular dynamics
simulation of the Src domain [8] as shown in panel D. To
be noted that in the all-atom simulation the transition of
the A-loop had not been sampled, explaining in part the
smaller fluctuations of such region in the all-atom RMSF.
Furthermore, the temperature of the coarse-grained sim-
ulation is not directly comparable to the temperature
of the all-atom simulation, preventing a sound quanti-
tative comparison between the two RMSFs. To show if
a residue flexibility is simply correlated to the number
of its predicted interactions, we show in Fig. S8 (panels
C) a representation where the color and thickness is in-
versely correlated to the number of contact predicted for
each residue. Finally, in Fig. S8 (panel E) are shown the
two sampled structures of SRC most similar to the active
and inactive conformations respectively.

X. RAS FOLDING

We investigated the folding properties of the RAS do-
main (Pfam code PF00071, PDB 5P21, residues K5 to
R164). To this aim, we used a 180 ns parallel tem-
pering simulation with 10 replicas at increasing tem-
peratures: 260.0 K, 270.0 K, 280.3 K, 291.0 K, 302.1
K, 313.7 K, 325.7 K, 338.2 K, 351.2 K, 364.7 K. We
found that the folding transition of RAS features a clear
peak in the heat capacity at constant volume Cv(T )
at Tf=317 K which defines the folding temperature in
our model (see Fig. 9, top panel). Indeed, we find
the transition to be highly cooperative and character-
ized by a van’t Hoff enthalpy to calorimetric enthalpy
ratio: κ2=0.92. The Chan’s parameter[9] κ2 is defined
as the ratio of the van’t Hoff to calorimetric enthalpies:
κ2 = 2Tmax

√
(kBCp(Tmax))/∆Hcal, where Tmax is the

temperature of the Cp peak and ∆Hcal is the calorimet-
ric enthalpy of the reaction determined as the integral of
the heat capacity across the transition region.

In Fig. S9 (bottom panel) we show the free energy
landscape close to Tf obtained using a standard Cα
structure-based model. At variance with the model pre-
sented in this work, the absence of a folding intermediate
in this case points to an interplay of the energetic and en-
tropic contributions of the alpha helices to the stability
of the protein that cannot be correctly captured with a
too crude coarse-graining. The Cα structure-based sim-
ulation is done using the model of ref. [10] and [11] with
default parameters.
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XI. ANALYSIS DETAILS

If not otherwise stated, all the analysis are done on
the lowest temperature trajectory. To compare the sim-
ulated protein X to the native conformation Y we use
the distance root mean square deviation:

dRMSD =

√
1/L(L− 1)

∑
i6=j

[d(Xi, Xj)− d(Yi, Yj)]2

(18)
where d(Xi, Xj) is the distance between Cα atom i and
j of the structure X, calculated on the set of the L
Cα atoms of the protein residues having less than 5%
sequence gaps in the alignment. At variance with the
commonly adopted RMSD, this measure does not need
a previous roto-translation fit on a common structure to
be meaningful.

The folding reaction cooperativity of Ras is estimated
using the Chan’s parameter[9] κ2 defined as the ra-
tio of the van’t Hoff to calorimetric enthalpies: κ2 =
2Tmax

√
(kBCp(Tmax))/∆Hcal, where Tmax is the tem-

perature of the Cp peak and ∆Hcal is the calorimetric
enthalpy of the reaction determined as the integral of
the heat capacity across the transition region.

To emulate a blind structure prediction where we don’t
have a reference structure to compare with, we report
as our best predicted structures both the lowest energy
structure sampled and the central structure of the most
populated cluster. In both cases the lowest temperature
trajectory is used. The central structure of the most pop-
ulated cluster is obtained through a single-linkage clus-
tering algorithm of g cluster program from the GRO-
MACS package with a Cα RMSD cutoff of 0.2 nm on
2500 structures uniformly picked in the second half of
the simulation. The central structure of the cluster is
the structure with the smallest distance to all of the other
members of the cluster.

XII. DIHEDRAL POTENTIAL

The Vφ,ψ bonded term for GLY and non-GLY residues
is obtained fitting the probability distribution of (φ, ψ)
over the Ramachandran plot of two reference all-atom

molecular dynamics simulations: one for a capped GLY
peptide (ACE-GLY-NME) and one for a capped ALA
peptide (ACE-ALA-NME). The water-solvated peptides
have been prepared using a standard protocol: steep-
est descent minimization, 50 ps density equilibration at
300 K and constant pressure, 500 ps thermalization at
constant volume and 2 ns equilibration at 300 K and
constant volume with the velocity-rescale thermostat[12].
The AMBER99SB-ILDN force field [13] has been used
for these simulations together with the TIP3P[16] water
model for the 785 water molecules composing the sys-
tems. In order to have an exhaustive sampling of the
Vref (φ, ψ) potential energy surface (PES), we run the
simulations for 20 ns, with a 2 ps time step, using the
well-tempered metadynamics[17] enhanced sampling al-
gorithm on the two dihedrals to guarantee a full conver-
gence.

In the same way that the Vref (φ, ψ) PES is the net re-
sult of the many contribution of the all-atom force field
terms, we would like to reproduce this PES as the ef-
fective result of all the coarse-grained potential terms,
including the yet to be determined Vφ,ψ. In other words,
to avoid double counting the interactions, Vφ,ψ should
match Vdiff (φ, ψ) = Vref (φ, ψ)−V0(φ, ψ) where V0(φ, ψ)
is the coarse-grained PES obtained without the (φ, ψ) di-
hedral terms.

To calculate V0(φ, ψ) we simulated 20 ns of the corre-
sponding coarse-grained peptides with the stripped down

Hamiltonian: H0 = Ṽbonds + Ṽangles + Ṽtorsions + Ṽ 1−4
LJ

(see the main text for the terms explanation), using the
the well-tempered metadynamics algorithm to have a re-
liable PES, as in the previous case.

Finally, in order to better fit the minima as compared
to the transition barriers, the actual fit is done on the
probability pdiff (φ, ψ) = exp(−Vdiff (φ, ψ)/kT ) rather
than directly on Vdiff (φ, ψ). The fit of pdiff is done

using the function f(φ, ψ) = exp(−[
∑5
i=1 k

φ
i (1 + cos(φ−

φ0
i )) +

∑5
i=1 k

ψ
i (1 + cos(ψ − ψ0

i ))]/kBT ) which can be
conveniently used in the MD code. The procedure is
summed up in Fig. S10 together with the different PES
involved. In particular, the resulting coarse-grained PES
once all the terms are included is also shown as a double
check. In table II, are reported the fit parameters.
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Pfam ID L τslow εr (10 τslow)

cNMP binding 91 100 2.6

RRM 1 70 100 3.4

ADH zinc N 130 1000 3.5

TrkA N 116 1000 2.9

CMD 85 800 1.5

Table I: The table shows the slowest relaxation time (τslow, in units of MC sweeps) associated to the MC dynamics in sequence
space for five protein families (Pfam ID) of different length L, and the mean relative absolute error εr on frequencies

reconstruction obtained using a number of MCMC steps proportional to τslow in the evaluation of the gradient in Eq. 7.
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residue i kφi φ0
i kψi ψ0

i

1 -1.678 0.203 0.403 2.280

2 13.973 6.130 9.963 4.389

GLY 3 3.813 2.712 1.327 3.850

4 -1.606 2.171 2.488 0.272

5 -2.206 0.088 -1.121 6.167

1 9.668 5.396 -4.900 1.977

2 9.194 3.662 5.627 2.217

non-GLY 3 7.553 0.135 2.492 5.951

4 -0.079 1.937 -2.265 3.372

5 -0.527 2.162 0.635 4.165

Table II: The fit parameters of the f(φ, ψ) function for GLY and non-GLY. The units are kJ/mol for kφi and kψi and radians
for φ0

i and ψ0
i .
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PDB N/Ng prec RMSD dRMSD

minNg/N CC Emin minNg CC Emin

1RQM 63/62 0.75 2.4/2.4 3.0 2.8 1.9 2.4 2.2

3F52 64/49 0.69 1.7/3.0 2.4 2.3 1.3 1.9 1.9

1OR7 68/53 0.74 1.6/2.4 2.3 2.9 1.0 1.3 1.9

1G2E 71/50 0.80 1.6/2.3 2.4 2.5 1.2 2.0 2.0

1ODD 76/65 0.55 3.0/3.5 5.0 4.0 2.1 3.4 3.1

3FHI 81/72 0.89 2.1/2.7 2.6 2.9 1.6 1.9 2.1

3D7I 85/61 0.39 3.9/6.4 6.2 6.4 2.4 3.7 3.8

3DF8 87/77 0.48 3.0/3.6 4.0 3.7 2.2 2.8 2.6

1BQU 88/57 0.58 2.7/4.0 4.1 4.7 2.1 2.8 2.9

2O72 90/66 0.69 3.4/3.7 3.9 4.1 2.5 3.0 3.1

1OAP 96/78 0.63 2.2/3.3 3.0 3.2 1.8 2.3 2.4

1KGS 111/99 0.70 3.0/3.1 3.6 4.2 2.5 2.9 3.1

2GJ3 112/80 0.58 4.8/5.3 11.8 10.0 3.6 9.8 7.3

3NYY 112/82 0.71 3.7/6.1 5.0 4.8 2.7 3.2 3.5

3FWZ 116/100 0.73 2.9/3.5 3.7 4.5 2.1 2.6 3.0

1A71 119/99 0.66 4.6/5.5 6.1 6.2 2.9 3.7 3.6

5P21 160/144 0.73 3.6/3.7 4.3 4.4 2.7 3.3 3.3

3TGI 216/167 0.78 3.8/4.2 5.3 5.8 2.8 3.7 4.0

Table III: The set of 18 proteins simulated is shown with their PDB code together with the total number of residues N and the
number of residues with less than 5% gaps Ng as a subscript, the precision for the top N predictions prec, the minimum root
mean square deviation (RMSD) structure calculated over the Ng residues and over all N residues minNg/N , the RMSD of the
central cluster structure CC and the RMSD of the minimum energy structure Emin. In the last three columns are shown the
minimum distance RMSD (dRMSD) structure calculated over the Ng residues minNg and the dRMSD of the central cluster
structure CC as well as the dRMSD of the minimum energy structure Emin. Both the RMSD and dRMSD are calculated

using the CA atoms and the values are in Angstroms (Å).
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Figure 1: Left panel: correlation between the pairwise frequencies fi,j(α, β) (plotted on y-axes) computed from Metropolis
Monte Carlo sampling of the pairwise model and the empirical frequencies Fi,j(α, β) from multiple sequence alignment (x-axes)

(after correcting for the bias from regularization, see Eq. 7); on top, results are shown for one of the smallest domains
(RRM 1 domain, 71 residues); on bottom, for the largest protein in the dataset (Trypsin domain, 216 residues). Right

panel: the residue-residue, Cβ-Cβ distance distributions for pairs corresponding to different values of coevolutionary coupling
C are shown as continuous lines (large couplings, C > 0.7, red line; weak couplings, C = 0.2± 0.1, magenta line; couplings

close to zero, C = 0.0± 0.1, blue line). The black broken line corresponds to the distribution for the residue-residue distances,
computed from the 18 experimental structures and normalized for the ideal gas contribution (g(r) ∝ P (r)/r2) (arbitrary scale).
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Figure 2: Schematic comparison of the actual (red, pink) and the predicted (cyan) alpha helical content per residue of the 18
proteins. In pink are shown the 3-10 helices.
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Figure 3: Precision of residue-residue contact prediction for the 18 protein domains, as a function of the scaled rank of the
score, defined as rank / total number of contacts in a structure. Continuous lines show results for the Boltzmann learning
algorithm, while the broken lines refer to the mean field solution for the couplings[3]. We included in the analysis all the

residue pairs with a sequence separation larger than four (dark blue lines) and larger than five (light blue lines).
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RRM_1

cNMP_binding

TrkA_N

CMD

Figure 4: “energy” landscapes in the space of the first two principal components of the MSA covariance matrix for four
protein families: (from top to bottom) RRM 1, cNMP binding, TrkA N and CMD.
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Figure 5: The dRMSD and RMSD calculated over the lowest temperature trajectory for the largest protein, Trypsin. In the
inset, a short protein fragment to illustrate the level of coarse-graining and all the non-bonded interactions present in the
coarse-grained model. The dashed lines indicate a Lennard Jones potential, the dotted lines a repulsive potential. See the

Model description for their functional form and parameters. In red are shown the O atoms, in black the Cα and Cβ atoms, in
blue the N atoms and in gray the C’ atoms.
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Figure 6: The Cα-dRMSD of the predicted structure with respect to the native conformation calculated using all the residues
with less than 5% gaps in the sequence alignment. The proteins, shown with their Pfam ID, are listed with increasing length
from left to right. The continuous blue line connects the best structure dRMSD sampled during the run while the dashed blue
line the dRMSD of the minimum energy structure sampled. Also shown as a baseline (continuous black curve) are the best

dRMSD obtained using the same protein model where instead of the predicted contacts the actual native contacts are used as
in a structure-based (SB) model. The lines are merely to guide the eye.
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Figure 7: The chain A and B of PAS homodimer are shown in blue and cyan respectively, together with the 5 dimer interface
contacts: I40 - F27 ; Y49 - F27 ; A117 - P35 ; L130 Q29 ; M132 - A34 (residue chain A - residue chain B).
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Figure 8: The B-factor of the X-ray 2SRC structure (panel A) is compared to the same quantity obtained during the
simulation (panel B). Red zones represent more flexible regions and the thickness is proportional to the value. In panel C we
report on the structure the number of predicted contacts per each residue. No contacts predicted correspond to red color. In
panel D we show the root mean square fluctuation (RMSF) of SRC catalytic domain obtained with the model simulations

(blue) overlaid on the RMSF obtained using a reference all-atom MD simulation (green). The RMSF are translated on the
structure as B-factors using the relation B = (8π2/3)RMSF 2. In panel E we show two sampled conformations of the SRC

catalytic domain most similar to the active state with an open activation loop (left) and inactive state with a closed loop
(right). The activation loop (A-loop) is shown in yellow in the sampled conformations and in transparent green for the active

(PDB: 1Y57) and inactive (PDB: 2SRC) crystal structures.
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N

U

Figure 9: Thermodynamics of RAS folding. Top panel: the heat capacity Cv is reported as a function of temperature T
obtained simulating RAS with our model. Bottom panel: the folding free energy of Ras protein using a Cα structure-based

model ([10, 11]) shown at three different temperatures around the folding temperature Tf as a function of the Cα-dRMSD. The
native (N) and unfolded (U) states are also identified.
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Figure 10: The protocol to obtain the coarse-grained dihedral term V (φ, ψ) is represented schematically as two equations (top
two rows for GLY, bottom two rows for non-GLY). The Vref (φ, ψ) is the desired potential energy surface obtained through an

all-atom (AA) simulation. Subtracting the PES that results from the coarse-grained (CG) model without any (φ, ψ) term
(V0(φ, ψ), central column) we obtain the PES to be fitted Vdiff (φ, ψ). Using the fit described in the text, we obtain the CG

potential term V (φ, ψ) for each residue (second row for glycine, bottom row for non-GLY, on the right hand side). As a check,
if we now simulate the capped glycine peptide (or alanine peptide) with all the CG terms, we obtain the PES shown on the left
hand side, second row (bottom row for alanine), for which the shape and position of the main minima reproduces the AA one

(Vref (φ, ψ)).


